47 research outputs found

    A Decade of Research on Self-Healing Concrete

    Get PDF
    The main findings of a decade of research on the design and development of the first self-healing concrete are summarized in this chapter. The autonomous healing concept is introduced, and plethora of design campaigns is enlisted. Healing agent encapsulation and agent tubes vascular networks are reported as the most efficient healing configurations for laboratory-scale and real-size applications, respectively. Crack formation, closure after healing and further damage are phenomena tracked by using advanced experimental monitoring methods and their performance is critically revised. The effect of self-healing technology on concrete mechanical response, durability and long-term response to damage are critically discussed. The study contributes to the open discussion in the scientific research community regarding self-healing concrete upscaling feasibility and finally it aims to contribute as a base for the future studies dealing with concrete design optimization

    Monitoring of fresh concrete curing by combined NDT techniques

    Get PDF
    Ensuring the quality of fresh concrete and suitable curing conditions substantially reduces the possibility of future failure to perform as designed. However, the most reliable examination for concrete is mechanical testing after hardening. In order to obtain better control on the process from very early age, this study describes a combined approach of several monitoring techniques. Acoustic emission is used to record the numerous events occurring during the first hours when concrete is in liquid form as well as later when hardening takes place and drying shrinkage cracking is exhibited. In addition, pressure sensors follow the development of capillary pressure in the matrix and indicate the moment of air entry into the system. Settlement and shrinkage, measured both non-contact by digital image correlation and conventionally, as well as temperature shed light into the complex processes occurring into fresh concrete and help to verify the sources of AE. The final aim is to develop a methodology to assess the quality of the fresh concrete from an early age, to possibly project to the final mechanical properties and to ensure a proper service life

    Determination of strength and debonding energy of a glass-concrete interface for encapsulation-based self-healing concrete

    Get PDF
    This paper presents a combined experimental-numerical analysis to assess the strength and fracture toughness of a glass-concrete interface. This interface is present in encapsulation-based self-healing concrete. There is absence of published results of these two properties, despite their important role in the correct working of this self-healing strategy. Two setups are used: uniaxial tensile tests to assess the bonding strength and four point bending tests to get the interfacial energy. The complementary numerical models for each setup are conducted using the finite element method. Two approaches are used: cohesive zone model to study the interface strength and the virtual crack closure technique to analyze the interfacial toughness. The models are validated and used to verify the experimental interpretations. It is found that a glass-concrete interface can develop a maximum strength of approximately 1 N/mm^2 with fracture energy of 0.011 J/m^2

    Concrete fracture energy increase by embedding capsules with healing ability : the effect of capsules nature

    Get PDF
    Concrete is the basic material of infrastructures since it is cost-effective, efficiently produced and strong. Despite its popularity, under service-loads the concrete matrix suffers from flaws that can be crucial for its durability. To overcome the shortcoming in durability, concrete is traditionally reinforced by steel or its mixture is modified by introducing additives that enrich the autogenous crack closure. Nowadays, an alternative solution is proposed namely autonomous healing. Repair polymer agent is encapsulated into tubes and embedded into concrete during mixture. The tubes break as soon as a crack wider than 100 渭m is propagated across them. Only at this moment, the agent is released and polymerized. The crack void is sealed and repaired (mechanical features restored as well). The previous years, researchers at the Dept. Mechanics of Materials and Constructions, VUB have studied the mechanical performance of newly developed healing systems and evaluated their repair efficiency. In this study, an additional benefit of autonomous healing is assessed: the short or long tubes contribute as local reinforcement of concrete under tensile load and enhance the fracture toughness. The energy release rate and other fracture mechanics parameters are measured for plain concrete beams tested under three-point bending. The reference case (concrete carrying no healing system) is compared to cases at which different encapsulation systems are applied. Additionally, the study of fracture is correlated to the findings of inspection with different non-destructive techniques. The effect of tubes design (geometry, shape, material) on the fracture toughness is studied leading to the most promising healing system

    Damage detection and healing performance monitoring using embedded piezoelectric transducers in large-scale concrete structures

    Get PDF
    Concrete keeps being the leading structural material due to its low production cost and its great structural design flexibility. However, concrete is prone to various ambient and operational loads which are responsible for crack initiation and extension, leading to decrease of its anticipated operational service life. The current study is focusing on the use of ultrasonic wave propagation techniques based on low-cost and aggregate-size embedded piezoelectric transducers for the online monitoring of the damage state and the healing performance in concrete structures with an autonomous healing system in the form of encapsulated polyurethane-based healing agent embedded in the matrix of concrete. The crack formation triggers the autonomous healing mechanism which promises material recovery and extension of the operational service life. The proposed technique is applied on large-scale, steel reinforced, concrete beams (150mm 脳 250 mm 脳 3000 mm), subjected to four-point bending. After the capsules are broken and the healing agent is released, which results in filling of the crack void, and polymerized, the concrete beams are reloaded. The results demonstrate the ability of the monitoring system to detect the initiation and propagation of the cracking as well as to assess the performance of the self-healing system

    A novel design of autonomously healed concrete : towards a vascular healing network

    Get PDF
    Concrete is prone to crack formation in the tensile zone, which is why steel reinforcement is introduced in these zones. However, small cracks could still arise, which give liquids and gasses access to the reinforcement causing it to corrode. Self-healing concrete repairs and seals these small (300 碌m) cracks, preventing the development of corrosion. In this study, a vascular system, carrying the healing agent, is developed. It consists of tubes connected to a 3D printed distribution piece. This distribution piece has four outlets that are connected to the tubes and has one inlet, which is accessible from outside. Several materials were considered for the tubes, i.e., polymethylmethacrylate, starch, inorganic phosphate cement and alumina. Three-point-bending and four-point-bending tests proved that self-healing and multiple self-healing is possible with this developed vascular system

    Reservoir-Vascular Tubes Network for Self-Healing Concrete: Performance Analysis by Acoustic Emission, Digital Image Correlation and Ultrasound Velocity

    No full text
    A novel linear reservoir-vascular tubes network is presented in this work and the design efficacy is explored by testing concrete beams loaded on bending and by assessing their damage healing and mechanical recovery. The healing system is composed of additively manufactured polymer components that appear equally effective compared to conventional ceramic tubes since the 3D printed polymer-tubes instantly break upon cracking. It is shown that bulk reservoirs embedded into concrete can deviate cracks and detrimentally affect the concrete’s resistance to failure. The crack formation and re-opening is monitored by acoustic emission (AE) and digital image correlation (DIC) concluding that initial brittle cracking is shifted after healing to a pseudo-ductile crack re-opening with extended post-softening. The sealed cracks show significant strength and toughness recovery (i.e., above 80% of the original value) escorted also by an ultrasound pulse velocity (UPV) increase (up to 126% relative to the damage state) after a healing intervention. The work critically reports on obstructions of the current design: (i) the network tubes are clogged although the agent was flushed out of the network after healing and as a result re-healing is unattainable; and (ii) vacuum spaces are formed during casting underneath the network tubes, due to limited vibration aiming on the tubes’ tightness, but also due to inefficient aggregates settlement, leading to a strength decrease. This work calls attention to the impact of vascular networks design and performance on a complex cracks network and fracture zone development

    Experimental Techniques Synergy towards the Design of a Sensing Tool for Autonomously Healed Concrete

    No full text
    The first-generation of autonomously healed concrete elements is under construction: beams (SIM-SECEMIN project, Flanders Belgium), one-way flat slabs (MeMC, VUB, Belgium) and wall panels (Materials4Life project, UK) are designed with the embedment of encapsulated repair agent. In the presence of cracks, capsules rupture releasing the agent that fills the crack void. The released agent seals and mechanically restores the crack discontinuity. This automatic process can be repeatable using vascular networks that carry the agent and release it at different locations into concrete. The innovative design is built up following several series of laboratory-scale beam tests configured over the last decade. This paper discusses the application of numerous experimental techniques that assess the mechanical performance of autonomously healed concrete: Acoustic Emission, Ultrasound Pulse Velocity, Optical Microscopy, Digital Image Correlation, Capillary Water Absorption, Computed Tomography. The study focuses on the performance and efficiency of each method on laboratory and real-scale tests. The techniques with the most promising output are selected and combined in order to design a sensing tool that evaluates healing on real applications
    corecore